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The correction for the contribution of first-order thermal diffuse scattering to the measured integrated 
Bragg intensities of cubic single crystals has been derived by Nilsson (Ark. Fys. (1957) 12, 247). Nilsson's 
formulation applies to diffractometer measurements using an co scan (crystal rotating, detector sta- 
tionary) and involves the approximation of an infinite slit height. In this paper the corresponding result 
for a 0 -20  scan (detector coupled 2:i to the crystal) is given and a further analytical method which 
approximates the volume scanned in reciprGcal space to a sphere is discussed. The analysis for both co 
and 0 -20  scans is extended in order to eliminate some of the approximations involved in the other 
methods; the limitations of the various methods are discussed and the results of example calculations 
are presented. 

Introduction 

One of the corrections necessary when accurate struc- 
ture factors are to be derived from Bragg intensity 
measurements is that for the thermal diffuse scattering 
(TDS) which peaks beneath the Bragg peak and so is 
included in the observed intensity. The standard de- 
rivation of this correction for measurements on cubic 
single crystals has been given by Nilsson (1957). How- 
ever, Nilsson's formulation is applicable directly only 
for co scans (crystal rotating, detector stationary) and 
great care must also be taken in view of the approxima- 
tions involved. It is the purpose of this paper to present 
the corresponding result for a 0-20 scan (detector 
coupled 2:1 to the crystal) and to extend the analysis 
in order to eliminate some of the approximations in- 
volved in the Nilsson formulation. 

Nilsson method 

Nilsson (1957) derives the total observed intensity for 
an imperfect cubic single crystal as: 

I =  I0(1 +00 ,  (I) 

where I0 is the true Bragg intensity and ~I0 is the con- 
tribution to the observed intensity from TDS. 

Ignoring multi-phonon scattering 

4zrk B T 
= 323 sin 20 sinzO~'a, (2) 

where ~c is a function of the elastic constants and is 
given approximately by 

}bl(cll + C12) + C44(2C11 + C44) 
Kapprox= 1 2 1 l~)sblb2+3_bl(Cll+C12)c44_t_CllC24 (3) 

with 
bl  = c l l  - c12 - 2c44 [ (4) 
b2=ci1+2c12 +c44 I 

and the following quantities in equation (2) have their 
usual meanings: kB, Boltzmann's constant; T, absolute 
temperature; 0, Bragg angle; 2, wavelength. 

The derivation of e is simplified by averaging the 
TDS over a spherical surface in reciprocal space 
centred on the relevant reciprocal lattice point and cr 
is then obtained by integrating the inverse square of 
the wave vector, q, of the phonon over the volume in 
reciprocal space appropriate to the type of scan used: 

I I dvdydz 
a -  nk sin 2 0  iql2 , (5 )  

where k = 2rr/2. 
The expression for c~ given in equation (2) has been 

derived for the high temperature limit when each mode 
has energy kilT. In addition the expression for/¢al)prox 
in equation (3) is valid only if b~ is close to zero, i.e. 
the elastic constants are almost isotropic (for b l=0 ,  
Kapprox is exactly correct). 1< has been derived for other 
conditions by Schwartz (1964) but in the present paper 
we shall assume equations (2) and (3) to be valid. 

Nilsson shows that a can be evaluated analytically 
if the detector aperture is taken to be infinite in the 
vertical direction. It is convenient to define a point in 
reciprocal space by the three angles u, v and w in real 
space: u is the displacement of the crystal from the 
Bragg setting, i.e. the increase in the angle between the 
incident beam and the reflecting planes from the value 
0: v and w + 620 are the vertical and horizontal diver- 
gence angles respectively of the scattered beam with 
respect to the direction of the Bragg scattered beam, 
v being measured upwards and w towards increasing 
20, and d20 is the increase in detector angle at a point 
during the scan. The Bragg reciprocal lattice point then 
corresponds to u = c = w = 0  and we can define a scan 
range from u~ to u2 and a rectangular slit aperture by 
the limits el, v2, w~ and WE. The expression for o- given 
by Nilsson for an co scan is then: 

A C 24A - I 
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14'2 [f[2u2 sin20 2Ul sin20 
. ) - J (  . )] 

W 2 14' 2 

_ 14.1 [g (2,.sin20)_g(2,1sin O)] 
2 s i n 2 0  14'1 14'I .' 

-(u2-ul) ln ( -  wl], 
W2 / 

(6) 

where 

f ( x )=x  In [(1 - x )  sin 0 +  [:X2--2x sin20+sin20]--x 
+ s i n  0 In [x--sin20+ ]/xZ--2x sin20+ sin20] (7) 

and g(x) is obtained from f(x) if sin 0 is replaced by 
- sin 0. 

This expression for o- assumes that wl is negative 
and w2 positive, as they must be for a normal  peak scan. 
However, this condition on the signs of Wl and w2 may 
be relaxed for a background measurement,  in which 
case we must modify equation (6) as follows. If wl and 
1,1' 2 are both positive we must replace g(x) by f (x )  in 
the second square bracket and put + Wl/W2 instead of 
- -  W 1 / 1 4 '  2 in the last term; if w~ and w2 are both negative 
we must replacef (x)  by g(x) in the first square bracket 
and again put +Wl/W2 instead of - w d w 2  in the last 
term. 

Since this derivation has assumed an infinite slit 
height it is likely to overestimate the TDS contr ibution 
quite appreciably for a single calculation. As Nilsson 
points out, the addit ional contribution will tend to be 
cancelled out by a similar contribution to the TDS 
included in the background calculation, which will be 
subtracted from the peak intensity. However, some 
addit ional contribution will always remain and this 
may still be quite large if the background measurement  
is not very close to the Bragg peak. We shall discuss 
this quantitatively in a later section. 

and G(x) is obtained from F(x) if cos 0 is replaced by 
- c o s  0. Changes in sign of wl and W 2 require the same 
changes as for the o) scan case, replacing F(x) by G(x) 
or G(x) by F(x) as required; equation (8) is for wl 
negative and w2 positive. 

Overestimation of the TDS contr ibut ion will again 
occur in the same way as for the co scan case. 

(b) Spherical volume 
A much simpler correction can be derived by con- 

sidering the integration for a to be carried out over a 
sphere centred on the reciprocal lattice point (Pryor, 
1966). This avoids the need to consider an infinite slit 
height by approximat ing the appropriate volume to a 
sphere so that we may expect to obtain a better approx- 
imation to the TDS for a single calculation. The inte- 
gration can be carried out immediately giving 

k 

° 

(°) 

Other analytical methods 
(a) 0-20 scan with infinite slit height 

For a 0-20 scan the volume swept out in reciprocal 
space will, in general, differ markedly from that swept 
out during an oJ scan (Fig. 1). We have therefore derived 
the corresponding result for a 0-20 scan, assuming an 
infinite vertical aperture and integrating analytically as 
in the Nilsson case. The resultant expression for o- is 

= w2 (2 .2cos20 t 
\ w2 

_ 
2 cos20 14'I 14'1 

W1 ] 
--(U2--~/1) In (-- ~'2J ' 

where 

(8) 

F(x)=x In [(1 + x) cos O+ l /x2+ 2x cos20+ cos2-O] 

+ cos 0 In [x+  cos20+ l"X2q-21~-COS20+COS20] (9) 

(b) 
Fig. 1. Diagrams of reciprocal space illustrating the volume 

swept out for (a) r,) scan, (b) 0-20 scan. The orthogonal 
coordinates (x,y,z) in reciprocal space are defined for the 
c~ scan by x=kw-z tan 0, y=kv, z=2ku sin 0 cos 0 and for 
the 0 -20  scan by x=kw+z cot 0, y=kv, z=2ku sin 0 cos 0. 
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22 2u' (lO) 
o"3= n s i n 2 0  qm= -sin 20 ' 

where qm is the m a x i m u m  value of the wave vector 
of  the phonon,  i.e. the radius of the sphere, and u' is 
an effective scan range. In general the best value of u' 
will not be equal to the actual scan range (u2-  Ul) since 
the true volume depends on the dimensions of the 
detector aperture, u' must  therefore be estimated from 
a detailed consideration of the true volume or alter- 
natively it can be estimated by fitting the value of a3 
to that of  al or 0-2, corrected as necessary for finite slit 
height and background contribution, at a suitable value 
of 0 (e.g. 45°) and allowing for any change in scan 
range from reflexion to reflexion. Provided that an 
appropriate value of u' is used this method may give 
a good approximat ion to the TDS contr ibution over 
quite a large range of 0. 

As before a correction may be necessary for TDS 
included in the background measurement.  For this 
method the most convenient way is to consider a sta- 
t ionary background count at the extremities of the 
scan range and assume that the TDS measured at these 
points corresponds to that  calculated at the surface of 
the sphere, which is in fact ½ of the contribution to 
the peak measurement.  The validity of this procedure 
will of  course depend on the true shape of the volume 
concerned. 

It may be noted that if the scan range is the same 
for all reflexions this method gives an expression for 

which is proport ional  to sin20 for a given wavelength 
and temperature. The true Bragg intensity, I0, is given 
by 

I0 = IA exp (-- 2B sin20/22), (11) 

where B is the mean temperature factor (Buerger, 1960) 
and 1,4 is the value at 0°K (assuming no zero-point 
motion). If c~ is small we can approximate equation (1) 
to the exponential  form: 

I---I0 exp (~), (12) 

so that for a spherical volume and small ~ we can write 

o~ ~_ 2AB sin20/22 . (13) 

Hence, provided that conditions are such that the 
spherical volume approximat ion with u' constant is 
valid and the TDS corrections are small, the effect of 
TDS is equivalent to a decrease ( - A B )  in the mean 
temperature factor. Under  these conditions structure 
factors derived ignoring TDS effects will be fairly reli- 
able but the temperature factor will be in error. 

Numerical methods 

In general the methods of evaluating a described above 
all involve uncertain approximations.  In order to avoid 
these it is necessary to integrate the expression given 
in equation (5) over the exact volume in reciprocal 
space corresponding to the experimental scan and this 
can only be done readily by using numerical  methods. 

We can define the following orthogonal coordinates 
of a point in reciprocal space corresponding to a 0-20 
scan (Fig. 1 (b)]: 

x = k w + z  cot 0 
y = k v  
z = 2 k u  sin 0 cos 0 ,  (14) 

where u, v and w are the angular  displacements defined 
earlier. 

Hence we can write equation (5) in the form 

0 " =  
lg I U I W] 4u z cosZ0+4uw cos20 + wz-+ V 2 (15) 

Integrating first over v we obtain 

llU lW  1 
a = 1/.'4U2 cos20 + 4u[;;cos20 +;2- 

tan-1 dudw (16) V'4U 2 COS20 -Jr- 4uw c o s 2 0  2r W 2 v, 

_ In f"-,. ,1., iw21a [tan-'(v/a)]~dudw. (17) 

A similar result is obtained for an co scan [Fig. l(a)] 
for which x = k w - z  tan 0 and we must replace a2= 
4u z coszO+4uw cos20+ w 2 in equations (15) to (17) by 
bZ=4u 2 s in20-4uw sin20+ w 2. It can be seen that this 
result corresponds to the definition of a given by Nils- 
son, putting v=~0 cos 0, and Nilsson's equation (6) is 
obtained by putting vz = - vx = oo and integrating over 
u and w analytically. 

Retaining finite limits on v we must integrate over 
u and w numerically. Great  care must be exercised 
since the integrand becomes singular at the Bragg 
reciprocal lattice point (u=  w=0).  However, this sin- 
gularity can be avoided by putting 

( v )  n [ a ]  (18) 
tan-1 = ~ - -  tan-1 ! v 11 ' 

so that 

t74= luzlw2 dudw 
Ul  t l W l  a 

n ,,,, w, a tan-1 ,1 dudw (19) 

for vx negative, v2 positive. 
The first term is that corresponding to an infinite 

slit height and has been evaluated earlier and the 
second term does not have the singularity and so can 
be evaluated numerically. 

The authors have written a computer  program to 
determine the TDS correction using this method and 
details of this are available elsewhere (Rouse & Cooper, 
1968). The numerical integration is performed by Gaus- 
sian quadrature for a min imum of six points for both 
u and w and is repeated increasing the number  of 
points for both by one. This process is continued until 

A C 24A - 1" 
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two successive evaluations agree to within 0.1%. In 
the authors '  experience the number  of points required 
has never exceeded eleven. 

dimensions and the 'mosaic spread'  function should 
then be estimated experimentally for each reflexion 
using crystal (m) and detector (20) scans. 

Resolution effects 

The analysis in the previous sections has assumed that  
divergence of  the incident beam and the mosaic spread 
of  the crystal are negligible: in practice allowance for 
these factors may  be desirable. A detailed considera- 
tion of  instrumental  resolution is extremely complex 
(see e.g., Cooper  & Nathans ,  1967) introducing several 
other parameters  into the calculations. The resolution 
function of  the diffractometer can be considered as a 
probabili ty distribution in reciprocal space giving the 
probabili ty of  detection of the radiation as a function 
of  the scattering vector when the instrument has been 
set to measure a scattering process corresponding to 
a part icular  scattering vector. The introduction of this 
general probabili ty distribution, however, prevents us 
f rom obtaining an integral which can be evaluated 
analytically. Hence we are unable to avoid the sin- 
gularity which occurs at the Bragg reciprocal lattice 
point. 

To overcome this limitation we must  write the prob- 
ability over the volume concerned as a function of  the 
crystal misset only, as for mosaic spread, and take it 
to be unity between certain limits of v and w. This al- 
lows us to overcome the singularity as before, leaving 
an additional integration over the 'mosaic spread'  to 
be evaluated numerically. We should however increase 
the effective aperture dimensions to allow for the di- 
vergence of  the incident beam. The effective aperture 

Discuss ion 

From the considerations of  the earlier sections it is 
clear that  if accurate corrections for TDS are required 
these should be evaluated by means of  numerical inte- 
gration over the relevant volume in reciprocal space. 
Al though the use of  analytical methods may often 
provide satisfactory results considerable care is re- 
quired in view of the approximat ions  concerned. To 
illustrate this we shall consider some quantitative ex- 
amples, ignoring for the moment  any resolution effects. 

We shall consider first the X-ray measurements  of 
James & Brindley (1928) on potassium chloride, which 
were taken by Nilsson as an example. Following Nils- 
son we have calculated the TDS parameter  ~ [see equa- 
tion (1)] for an infinite slit height at 20°C. These cal- 
culations reproduce the values given by Nilsson for 
the peak scans but differ slightly on the background 
corrected values. This is possibly due to greater accu- 
racy in the present calculations, since a '  in Nilsson's 
Table 2 should be a smooth function of 0. The ct values 
are given in Table 1 together with the values obtained 
by numerical integration for the following angular  
dimensions (peak: u2= - u l  = 1"25 °, WE= -- Wl =0"75 °, 
U U o .  o o 2 = - ] = 0"75 , background:  U 1 = - -  0"25 , u 2 = 2.25 , 
wl = 1"25 o, WE = 2"75 o, V2 = -- Vl =0"75 o). Since no values 
of  these parameters  are quoted in the original paper  
we have used those given by Nilsson and assumed that  
the detector has a square aperture. Al though this may 

Table 1. TDS correction parameters (~) for potassium chloride at 20 °C 

52 53* 
51 Infinite slit Finite slit 54 

Infinite slit peak-  peak-  Spherical 
hkl 0 peak only background background volume 
400 13"0 ° 0.047 0.037 0.033 0.036 
600 19-7 0.127 0-097 0.079 0.081 
444 22.9 0.177 0.129 0.109 0.108 
800 26"7 0.248 0'179 0.147 0.146 

10,0,0 34.2 0.405 0-282 0.227 0.226 
666 35.7 0-438 0.298 0.244 0.244 

* Best values 

55 
AB 

=0.16 ,~2 
0.033 
0.076 
0.102 
0.139 
0.224 
0.244 

Table 2. TDS correction parameters (~) for barium fluoride at 400 °C 

51 52 53 54* 55 
scan 0 - 2 0  scan Sphere 0 - 2 0  scan Sphere 

hkl 0 Infinite slit Infinite slit (Infinite slit) Finite slit (Finite slit) 
511 25.5 o 0.084 0.072 0.091 0.056 0.069 
711 36-3 0.173 0.162 0.173 0.123 0.131 
733 42"8 0"228 0"224 0"227 0"170 0-172 
911 49.1 0.275 0-284 0.282 0.216 0.214 
933 55.6 0.308 0.334 0.336 0"257 0"255 
377 59.1 0-317 0"353 0.362 0.274 0.275 
577 66.9 0-338 0.428 t 0"328 t 

* Best values 
t Not calculated because of change in scan range. 

56 
AB 

--0.16 A 2 

0"065 
0"127 
0"171 
0"215 
0"262 
0"286 

1 
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not represent the true experimental conditions it will 
provide a useful case for comparison with the infinite 
slit height results. 

It can be seen that for these conditions the values 
(ct2) given by Nilsson result in errors of up to 5% in 
the corrected intensities. We have also listed the values 
c~4 for a spherical volume fitted to the numerical cal- 
culation (~3) at the 666 reflexion; and in addition the 
values c~5 = e x p  [2AB(sinzO)/22], where AB has the value 
0.16/~k 2 chosen to give agreement with c~3 at the same 
reflexion. It can be seen that  for this range of data  the er- 
ror in the intensities resulting from ignoring the TDS cor- 
rection is always less than 1% although there will be 
a resultant error  in the mean temperature  factor of the 
order  of  0 . 1 6 A  z, compared with the value 0 " 2 0 ~  2 

given by Nilsson (1957) on the basis of the infinite slit 
height calculations. 

As a second example we shall consider some recent 
accurate neutron diffraction measurements  on bar ium 
fluoride (Cooper,  Rouse & Willis, 1968), in particular 
several representative measurements  which were made 
at 400°C. In Table 2 we list the TDS parameters  cal- 
culated in six ways. 0~ 1 to ~4 correspond to o 1 to 0- 4 

respectively, being the parameters  obtained for (1) co 
scan, infinite slit height, (2) 0-20 scan, infinite slit 
height, (3) spherical volume, fitted to infinite slit height 
at 0 = 4 5 ° ,  and (4) 0-20 scan, finite slit height. ~5 is 
for a spherical volume fitted to the finite slit height 
at 0 =  45 ° and ~ 6  = exp [2dB(sinzO)/2 z] with a value of 
AB=0.16 ,~2.  The neutron measurements  were made 
with a 0-20 scan with a range of  u z = -  ul = 1.2 ° in 0 
and a slit of angular  aperture v z = - v 1 = l ' 6 2  °, w2= 
-Wl  = 1.12 ° (except for 577 for which the scan range 
was u 2 = -  ul = 1"6°). Background measurements  were 
made with a similar scan with the crystal offset f rom 
the Bragg peak;  the figures given in the Table refer 
to the peak scan only. 

If  we compare firstly the values of  ~1, (~2 and 0c3 we 
see that  the differences between the values calculated 
for an co scan and for a 0-20 scan with an infinite 
aperture are relatively small for 0 < 5 0  ° but increase 
rapidly for 0 > 50 °. cq =0~ 2 at 0 = 4 5  ° and c~3 has been 
fitted to this value. The effective scan range for the 
spherical calculation is then +_ 1.94 ° and it can be seen 
that c~.~ is a good approximat ion to ~z for 0 < 45 ° and 
to ~l for 0 > 45 ° and up to at least 60 °. 

0 . 4  - 

0 . 3  

0 . 2  

0.1 

a e<~ I ~ SCAN, INF. SLIT.  

o oC 2 O-20 SCAN, INF. SLIT. 

¢~" 3 F ITTED SPHERE. 

• o<. 4 0 -2O SCAN, FIN. SLIT. 
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x ~ 6 '~B 
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Fig.2.  T D S  coa-rection paramete rs  for  ba r ium fluoride at 400°C as a func t ion  of  h2-l-k2-t-I 2 (oc sin 2 0//],2), 
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0( 4 is the corresponding value calculated for the finite 
aperture (0-20 scan) and it can be seen that  the approx- 
imation of an intinite slit in this case gives an error 
of the order of  300/0 in the TDS contribution to the 
peak scan. The values obtained for a spherical volume 
(~5) are in this case also quite good approximat ions  
for 0 > 40 °; the effective scan range being + 1-47 °. A 
sphere of equal volume would give an effective scan 
range of  + 1.43 ° resulting in values of 7 30/0 lower than 
~5. These effective scala ranges may be compared with 
the true scan range of  + 1.2 °; a spherical volume using 
the true scan range would thus give values of c~ of the 
order of 20% too small in this case. The error in the 
intensities resulting from ignoring the TDS correction 
would again be less than about  1% with a correspond- 
ing error in the mean temperature  factor. The relative 
agreement between the various ~ values is also illus- 
trated in Fig. 2. 

We have also estimated the 'mosaic spread'  effect 
for the barium fluoride measurements.  The full width 
at half  height of  the mcasured peaks varied from 0.2 ° 
up to 0.8 ° resulting in a reduction of the TDS correc- 
tion between 1% and 10%. This can therefore be an 

impor tant  factor particularly if the width of  the meas- 
ured peaks changes rapidly with the scattering angle 
and passes through a focusing position. 

The authors  are indebted to Dr  B .T .M.Wil l i s  for 
numerous and valuable discussions and for access to 
his unpublished review on Lattice Vibrations and the 
Accurate Determinat ion of Structure Factors for the 
Elastic Scattering of Neutrons and X-rays. 
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A Neutron Diffraction Determination of the Crystal Structures of Thiourea 
and Deuterated Thiourea above and below the Ferroelectric Transition 

BY MARGARET M. ELCOMBE AND J. C. TAYLOR 

Solid State Physics Section, Australian Atomic Energy Commission, Lucas Heights, Sutherland, N.S.W. Australia 

(Received 13 November 1967 and in revised form 22 December 1967) 

The structures of thiourea, SC(NH2)~,, and deuterated thiourea, SC(ND2)2, have been determined at 
room and liquid nitrogen temperatures from three-dimensional neutron diffraction data. No significant 
structural change on deuteration has been found. N - H . - - S  hydrogen bonds occur in both materials 
at both temperatures with N-S distances of 3.35-3-43/~ and N-H-S  angles of 169-171 ° and, apart 
from these hydrogen atoms, the molecules are planar to within 0-010/~. An analysis of the thermal 
parameters of the atoms in each molecule in terms of rigid vibration parameters shows that at liquid 
nitrogen temperature the molecules are fairly rigid whereas at room temperature there are serious de- 
viations from rigidity. Excellent agreement has been found between the thermal vibrations of the mole- 
cules at room temperature and the observed structure change to the lower ferroelectric state. A qualita- 
tive theory of the fcrroelectric nature of thiourea is proposed which explains the observed temperature 
variation of the spontaneous polarization and coercive field in the lower ferroelectric region, in terms 
of a variable molecular orientation and a single hydrogen bond which is switched from one sublattice 
to the other during ferroelectric reversal. 

I. Introduction 

On cooling f rom room temperature,  thiourea,  
SC(NH2)a, passes through at least five different phases, 
two of which are ferroelectric (Goldsmith & White, 
1959). The ferroelectric phases occur in the temperature 
ranges 179-173°K and < 169°K. Substitution of deute- 
r ium for hydrogen raises the temperature  of  the three 

major  dielectric anomalies by 16 °, 16 °, and 1l °. The 
coercive field is small, 200 volts.cm -1 at  120°K. 

An X-ray diffraction study of the room temperature  
structure of thiourca has been made by Kunchur  & 
Truter  (1958) using photographic  data,  and again by 
Truter  (1967) using counter  data. The structure at 
293°K is or thorhombic  with space group Pnma and 
lattice parameters  a=7 .655 ,  b=8.537 ,  c=5 .520  A, all 


